Grasslands

10 More New Water Collection Technologies for the Okanagan (And an Extra One for Fun)

Currently water is collected in the Okanagan by three methods. The first is to turn high country lakes and streams into reservoirs, which are then piped down into the valleys, to provide water pressurized by gravity. There aren’t any untapped lakes left. The second is to pump water out of the lake. There isn’t any capacity left. The third is to pump water out of underground reserves. Water tables are falling. It’s time to think how else we can catch water and store it. Our teacher is the land itself. A few weeks ago, I talked about new ways to collect water in the Okanagan. You can read that post here: click. Below are more observations about some ways in which we can keep the plentiful water that falls on this land from evaporating away before it can be used to sustain life. These are our new water sources. You might notice a little bit of repetition from the previous post. I’ve tried to add new information and a new perspective whenever that happens. After all, I’ve worked for nearly two years getting to this point. It’s hard not to be excited! This is material for the final chapter of my book.

1. The Road Surface.

P1100447

Good Old Gravel Road!

Sure, mud puddles like the one don’t make for safe driving and lead to washouts, but the dips they fill are efficient at collecting water, and the fine glacial silt and clay of the valley’s upper soils are very effective at keeping it from draining away. Bumpy roads are a bad idea, and waterproof roads prevent frost heaves, but why are we rushing through our residential areas anyway? We can build landscaping cloth that lets water through but prevents weeds from growing upwards, and we can manufacture diapers that wick up a colossal amount of baby-processed milk and water in one go, without dribbling a drip, and we can’t build a road surface that traps and channels water, like that mud-puddle? Ah, but as I mentioned in my previous post on this subject (here) we do…

P1080225Alluvial Channels of a Roadside River

That’s the curb on the left.

The only problem is we drain that water into waste water systems and then deliver it to the sewage treatment plant. It costs a humungous amount of money. In fact, the 40,000 people of the city of Vernon are currently facing a $100,000,000 dollar upgrade cost, to bring this system up to speed. That’s $2500 a person. Surely, since most houses in Vernon are on a hill of one kind or another, we could work out a system in which block by block, kilometre by kilometre, neighbourhood by neighbourhood, the water is stored in cisterns, or is diverted into a series of greenhouses, growing first watercress and then tomatoes, before it is delivered into vertical gardens planted in holes drilled in standing water pipes, before, well, you get the idea. The upgrade could pay for itself and when the water finally got to the lake, it would have produced a huge volume of food along the way.

2. Underground Waterway Construction.

P1080468Choke Cherry Grove and Its Water Collector

I spoke about this concept at some length yesterday, and talked about this natural system in my previous post on new water technologies. What I want to add today is the concept that the earth has underground channels of rubble, solid rock, silt, clay, and soil, working together with gravity, that concentrate, move and deliver water — usually right where the best soil is, with different plants thriving in different regions of the system. Such underground damming and delivery systems, built out of rock, concrete, sand and clay, could be easily inserted into the hills to deliver the invisible dryland water into productive areas, within a few metres, or at most a hundred metres, from the point of collection. In a drying (but not a dry) climate, look underground for the water. Collect it there. You don’t need enough to pump. Let gravity do the work. Now, let me clarify my perspective: at the tiny wages society pays its young people today to look after an economy for the aged, they will not be able to afford $100,000,000 upgrade bills. Let’s give them the gift of ingenuity and creativity instead. Let’s proudly work with what we have. This system could be combined with the road system above.

3. The Plastic Bag (And its Friends)

P1090127Weed-whacked Weeds, Bagged for a Community Compost Program…

…where it will be tossed and turned and heated and will steam all this water away. Hunh?

Currently, the water is right where we want it, in a portable form, the collection apparatus is present, and … we’re not collecting the water that evaporates from the weeds? Not only that, why don’t we just build a device that will dry the weeds on the spot, for the cost of a lawnmower, let’s say, and collect the water. The bag above, left for a few hours in the June sun, shows how readily the water from the weeds collects on the plastic. This should be an easy one. How much water would we get? Huge amounts. Plants are well over 50% water.

4. The Pile of Rocks

P1090417Leave a Pile of Rocks Lying Around on a Clay Base

It will collect water. Don’t forget to capture and store that water. Letting it muck up your road is just disrespectful. I covered this concept in my previous post. Today I’d like to add that in this climate wells don’t have to be underground. In an atmosphere stripped of water by depressurizing and re-pressurizing effects on a roller-coaster ride over the mountains, everything is in reverse. Once you learn to think like that, you will find your missing water, like here:

5. The Parking Lot

P1100280 This Soil is destined for the Patchwork Community Garden, on the Okanagan College Site.

It did an effective job of stopping the water drainage from this student parking lot and turning it into …P1100277

Life!

Notice how the parking lot construction method separated this water from the ornamental growing space beside it, which then gets reconstructed into an artful water channel, using landscape cloth, to prevent plant growth and piped-in water from high in the mountains.

P1100245 Notice the Automatic Irrigation Hose on the Left, Behind the Tree

Might this not be the community garden? 

No, of course not. The real one is behind a fence, with the food growing in artificial soil from the composting facility, and irrigated by …

P1100258

…water piped in from high up in the hills. The food is then given away. It might be time to connect the dots. The water source and the sun are right here. Still, it’s a beautiful garden with an exciting mandate. I just think an opportunity was missed.

6. Wild Harvest

P1100519Don’t capture the water. Eat it.

Or plant grapes …

P1100475

Seedless Grapes Gone Wild, Bella Vista

These grapes have survived for many years without irrigation. They’ve found their water where it concentrates along an underground cut (an old water canal that’s now a walking trail). They draw it up, and concentrate it in their berries, where it can easily be harvested. Miles of grapes could be planted like this. Huge amounts of water can be captured like this.

7. The Loader Bucket

P1090115That’s Enough Iron-Rich Water for a Row of Carrots for One Week

The next time it rains (and enough rain comes in June to last the summer, if it were all carefully used and conserved), put all your pots and pans and wine glasses out. Either that, or collect it from your roof…

8. The Roof

P1080822Downtown Kelowna

And grow a tree.

P1080803If You Plant the Right Kind of Tree, You Can Harvest it Later

Downtown Kelowna

Either that or let the homeless people who live in this alley do so. After all, they live here.

9. Invent Water-Absorbing Artificial Grass. 

P1080584Plant it by the Roadside.

Harvest it once a year, instead of mowing the real thing.

Oh wait, why not just plant real grass on the roadside, harvest that while mowing, and process it in the sun-powered evaporator the plastic bags are suggesting above? Yeah, why not.

P1080708

10. Suck the Water Out of a Wasp

P1100394Crab Spider, Unlucky Wasp, and Canada Thistle

Oh, wait, leave that for the spiders.

10.5.  Plant a tree

P1100480Northern Flicker in a Chinese Elm, Grey Canal Trail

Every tree is an amazing water pump, powered by the sun. Tomorrow I’d like to talk about the technological implications of that. I think it’s pretty exciting. I’m sure the flicker agrees.

Remember: choose life!

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.