Imagine the Technological Possibilities!

Imagine if you could regulate heat loss and roof melting simply by switching from a flat roof to a roof covered in river rock, or a lightweight approximation of it. The insulating properties of the rock would keep the cold of the snow away from the roof, while the relative warmth of the snow would insulate the rock. Temperate change be gradual. What’s more, air flowing around the rounded forms of the rock would draw off the heat they give off while cooling under the effects of the snow, which would draw off the snow in channels, while allowing the insulating processes of snow and rock to continue. The rounded rocks are essential to make the process work. 

One Day After the Snow

Such a construction technique applied to even greater open spaces would allow for the gradual melting of snow, preventing sudden run-off events and allowing for a steady pumping of water through an environment. Notice how cheat grass uses thatch (below) to incubate seed in warmth, along a similar principle…

… while using the thatch to keep a warm layer of air next to the soil. By the time freezing happens, the soil will be drenched with melted snow. At that point, melting will add heat to the soil.

Three dimensional roofs with channels, that manipulate freezing and thawing processes to maintain steady states or gain an advantage on climate, that’s the way. Of course, you could farm like this, too. Then again, is that not the general form of Cascade, with an uneven surface generating warm valley floors?

The Big Bar Esker Against the Marble Range

And again?

My Grandfather Bruno Leipe and His Dog Pootzie Above the Similkameen, c. 1963

photo Hugo Redivo

In the case of the Similkameen, the warm valley floor is a sea of infilled river gravel in a deep glacial trench, which takes us back to where we began…

 

Cascadia is a dynamic land, isn’t it! By reducing run-off, and spreading out growing seasons, much of the work of industrial agricultural systems can be done at no cost, after original set-up. And we’re still talking about systems of depreciation and extraction, why?